top of page

ACHIEVEMENT

 

原著論文

  • S. Nishino, K. Shimizu, F. Horie, S. Fukuda, S. Izawa (2024) Sustained germination-promoting effect of cold atmospheric plasma on spinach seeds. Biosci. Biotechnol. Biochem. 89(1):95-101

  • R. Ando, Y. Ishikawa, Y. Kamada, S. Izawa (2023) Contribution of the yeast bi-chaperone system in the restoration of the RNA helicase Ded1 and translational activity under severe ethanol stress. J. Biol. Chem.299(12):105472

  • VTA. Nguyet, R. Ando, N. Furutani, S. Izawa (2023) Severe ethanol stress inhibits yeast proteasome activity at moderate temperatures but not at low temperatures. Genes Cells28 (10):736-745

  • Y. Kamada, R. Ando, S. Izawa, A. Matsuura (2023) Yeast Tor complex 1 phosphorylates eIF4E-binding protein, Caf20. Genes Cells28 (11):789-799

  • S. Fukuda, Y. Sakurai, S. Izawa (2023) Detoxification of the post-harvest antifungal pesticide thiabendazole by cold atmospheric plasma. J. Biosci. Bioeng.136(2):123-128

  • Noboru Furutani and Shingo Izawa (2022) Adaptability of wine yeast to ethanol-induced protein denaturation (Minireview). FEMS Yeast Res22(1):foac059, https://doi.org/10.1093/femsyr/foac059

  • VTA. Nguyet, N. Furutani, R. Ando, S. Izawa (2022) Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae. Biochim. Biophys. Acta Gen. Subj. 1866:130241

  • M. Yoshida, N. Furutani, F. Imai, T. Miki, S. Izawa (2022) Wine yeast Cells acquire resistance to severe ethanol stress and suppress insoluble protein accumulation during alcoholic fermentation. Microbiol. Spectr. https://doi.org/10.1128/spectrum.00901-22

  • Y. Ishikawa, S. Nishino, S. Fukuda, VTA. Nguyet, S. Izawa (2022) Severe ethanol stress induces the preferential synthesis of mitochondrial disaggregase Hsp78 and formation of DUMPs in Saccharomyces cerevisiae. Biochim. Biophys. Acta Gen. Subj. 1866:130147

  • M. Yoshida, S. Kato, S. Fukuda, S. Izawa (2021) Acquired resistance to severe ethanol stress on protein quality control in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 87(6), e02353-20

  • S. Uemura, T. Mochizuki, K. Amemiya, G. Kurosaka, M. Yazawa, K. Nakamoto, Y. Ishikawa, S. Izawa, F. Abe (2020) Amino acid homeostatic control by TORC1 in Saccharomyces cerevisiae under high hydrostatic pressure. J. Cell Sci., 133(17), jcs245555.

  • S. Kato, M. Yoshida, and S. Izawa (2019) Btn2 is involved in the clearance of denatured proteins caused by severe ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res., 19 (8), foz079.

  • N. Yoshimoto, T. Kawai, M. Yoshida, and S. Izawa (2019) Xylene causes oxidative stress and pronounced translation repression in Saccharomyces cerevisiae. J. Biosci. Bioeng., 128 (6), 697-703.

  • S. Fukuda, Y. Kawasaki, and S. Izawa (2019) Ferrous chloride and ferrous sulfate improve the fungicidal efficacy of cold atmospheric argon plasma on melanized Aureobasidium pullulans. J. Biosci. Bioeng., 128 (1):28-32.

  • D. Watanabe, T. Kajihara, Y. Sugimoto, K. Takagi, M. Mizuno, Y. Zhou, J. Chen, K. Takeda, H. Tatebe, K. Shiozaki, N. Nakazawa, S. Izawa, T. Akao, H. Shimoi, T. Maeda, H. Takagi (2018) Nutrient signaling via the TORC1-greatwall-PP2AB55δ pathway responsible for the high initial rates of alcoholic fermentation in sake yeast strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol., doi: 10.1128/AEM.02083-18.

  • S. Kato, Y. Yamauchi, and S. Izawa (2018) Protein synthesis of Btn2 under pronounced translation repression during the process of alcoholic fermentation and wine-making in yeast. Appl. Microbiol. Biotechnol., 102:9669-9677

  • S. Homoto, and S. Izawa (2018) Persistent actin depolarization caused by ethanol induces the formation of multiple small cortical septin rings in yeast. J. Cell Sci., 131(5): jcs217091. doi: 10.1242/jcs.217091.

  • TTM. Nguyen, Y. Ishida, S. Kato, A. Iwaki, and S. Izawa (2018) The VFH1 (YLL056C) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiaeYeast, 35(7): 465-475.

  • K. Itooka, K. Takahashi, Y. Kimata, and S. Izawa (2018) Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiaeAppl. Microbiol. Biotechnol., 102:2279-2288.

  • Y. Adachi, M. Umeda, A. Kawazoe, T. Sato, Y. Ohkawa, S. Kitajima, S. Izawa, I. Sagami, and S. Taketani (2017) The novel heme-dependent inducible protein, SRRD regulates heme biosynthesis and circadian rhythms. Arch Biochem. Biophys., 631:19-29.

  • N. Kawazoe, Y. Kimata, and S. Izawa (2017) Acetic acid causes endoplasmic reticulum stress and induces the unfolded protein response in Saccharomyces cerevisiae. Front. Microbiol., 8:1192. 

  • Y. Ishida, T.T.M. Nguyen, and S. Izawa (2017) The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural. J. Biotechnol., 252:65-72.

  • T. Takeda, M. Sasai, Y. Adachi, K. Ohnishi, JI Fujisawa, S. Izawa, and S. Taketani (2017) Potential role of heme metabolism in the inducible expression of heme oxygenase-1. Biochim. Biophys. Acta, 1861(7):1813-1824.

  • T. Nakamura, VTA. Nguyet, S. Kato, Y. Arii, T. Akino, and S. Izawa​ (2017) Trans 18-Carbon monoenoic fatty acid has distinct effects from its isomeric cis fatty acid on lipotoxicity and gene expression in Saccharomyces cerevisiae. J. Biosci. Bioeng.​, 123(1):33-38.

  • E. Nakajima, K. Shimaji, T. Umegawachi, S. Tomida, H. Yoshida, N. Yoshimoto, S. Izawa, H. Kimura, and M. Yamaguchi (2016) The histone deacetylase gene Rpd3 is required for starvation stress resistance. PLos One, 11(12):e0167554

  • Y. Ito, T. Kitagawa, M. Yamanashi, S. Katahira, S. Izawa, K. Irie, M. Furutani-Seiki, and T. Matsuyama (2016) Enhancement of protein production via the strong DIT1 terminator and two RNA-binding proteins in Saccharomyces cerevisiaeSci. Rep.6, 36997.

  • Y. Yamauchi and S. Izawa (2016) Prioritized expression of BTN2 of Saccharomyces cerevisiae under pronounced translation repression induced by severe ethanol stress. Front. Microbiol., 7:1319.

  • K. Itooka, K. Takahashi, and S. Izawa (2016) Fluorescence microscopic analysis of antifungal effects of cold atmospheric pressure plasma in Saccharomyces cerevisiaeAppl. Microbiol. Biotechnol., 100(21):9295-9304.

  • Y. Ishida, TTM. Nguyen, S. Kitajima, and S. Izawa (2016) Prioritized expression of BDH2 under bulk translational repression and its contribution to tolerance to severe vanillin stress in Saccharomyces cerevisiaeFront. Microbiol., 7:1059.

  • A. Mu, M. Li, M. Tanaka, Y. Adachi, T.T. Tai, P.H. Liem, S. Izawa, K. Furuyama, and S. Taketani (2016) Enhancements of the production of bilirubin and the expression of β-globin by carbon monoxide during erythroid differentiation. FEBS Lett., 590(10):1447-54

  • TTM. Nguyen, A. Iwaki, and S. Izawa (2015) The ADH7 promoter of Saccharomyces cerevisiae is vanillin-inducible and enables mRNA translation under severe vanillin stress. Frontiers Microbiolhttp://dx.doi.org/10.3389/fmicb.2015.01390

  • A. Takabatake, N. Kawazoe, and S. Izawa (2015) Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 99 (6), 2805–2814.

  • R. Kubo, K. Ohta, S. Funakawa, N. Kitabatake, S. Araki, and S. Izawa (2014) Isolation of lactic-acid tolerant Saccharomyces cerevisiae from Cameroonian alcoholic beverage. J. Biosci. Bioeng.,118 (6), 657-660.

  • T. Nguyen, S. Kitajima, and S. Izawa (2014) Importance of glucose-6-phosphate dehydrogenase(G6PDH) for vanillin tolerance in Saccharomyces cerevisiaeJ. Biosci. Bioeng., 118 (3), 263-269.

  • T. Nguyen, A. Iwaki, Y. Ohya, and S. Izawa (2014) Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiaeJ.Biosci.Bioeng.117,33-38.

  • Y. Yamamoto and S. Izawa (2013) Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells18(11), 974-84.

  • A. Iwaki, S. Ohnuki, Y. Suga, S. Izawa and Y. Ohya (2013) Vanillin Inhibits Translation and Induces Messenger Ribonucleoprotein (mRNP) Granule Formation in Saccharomyces cerevisiae: Application and Validation of High-Content, Image-Based Profiling. PLoS ONE8(4), e61748.

  • A. Iwaki, T. Kawai, Y. Yamamoto, and S. Izawa (2013) Biomass conversion inhibitors, furfural and 5-hydroxymethylfurfural, induce the formation of mRNP granules and attenuate translation activity in yeast. Appl. Environ. Microbiol.79(5), 1661-7.

  • A. Iwaki and S. Izawa (2012) Acidic stress induces the formation of P-bodies but not stress granules with mild attenuation of bulk translation in Saccharomyces cerevisiaeBiochem J.,446(2), 225-33.

  • K. Kamo, A. Takabatake, Y. Inoue, and S. Izawa (2012) Temperature dependent N-glycosylation of plasma membrane heat shock protein Hsp30p in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun.420(1), 119-23.

  • A. Yoshida, D. Wei, W. Nomura, S. Izawa, and Y. Inoue (2012) Reduction of glucose uptake through Inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae. J. Biol. Chem.287 (1), 701-711.

  • Y. Ukai, T. Kishimoto, T. Ohdate, S. Izawa, and Y. Inoue (2011) Glutathione peroxidase 2 in Saccharomyces cerevisiae is distributed in mitochondria and involved in sporulation. Biochem. Biophys. Res. Commun.411(3), 580-585.

  • K. Kato, Y. Yamamoto, and S. Izawa (2011) Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae. Yeast28 (5), 339-347

  • K. Ikeda, S. Kitagawa, T. Tada, H. Iefuji, Y. Inoue, and S. Izawa (2011) Modification of yeast characteristics by soy peptides: cultivation with soy peptides represses the formation of lipid bodies. Appl. Microbiol. Biotechnol.89 (6), 1971-1977.

  • S. Izawa, K. Ikeda, T. Miki, Y. Wakai, and Y. Inoue (2010) Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing. Appl. Microbiol. Biotechnol.88 (1), 277-282.

  • Y. Takatsume, T. Ohdate, K. Maeta, W. Nomura, S. Izawa, and Y. Inoue (2010) Crz1 destabilizes Msn2 and Msn4 in the nucleus in response to Ca2+ in Saccharomyces cerevisiae: FK506 has an additive effect on the Ca2+-induced expression of GLO1 via Msn2, Hog1, and the stress response element. Biochem. J.427 (2), 275-287

  • W. Nomura, K. Maeta, K. Kita, S. Izawa, and Y. Inoue (2010) Methylglyoxal activates Gcn2 to phosphorylate eIF2α independently of the TOR pathway in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol.86 (6), 1887-1894.

  • S. Izawa (2010) Ethanol stress response in mRNA flux of Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem.74(1), 7-12.

  • T. Ohdate, S. Izawa, K. Kita, and Y. Inoue (2010) Regulatory mechanism for expression of GPX1 in response to glucose starvation and Ca2+ in Saccharomyces cerevisiae: involvement of Snf1 and Ras/cAMP pathway in Ca2+ signaling. Genes Cells.15 (1), 59-75.

  • S. Izawa and Y. Inoue (2009) Posttranscriptional regulation of gene expression in yeast under ethanol stress. Biotech. Appl. Biochem.53 (Pt2), 93-99.

  • W. Nomura, K. Maeta, K. Kita, S. Izawa, and Y. Inoue (2008) Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: methylglyoxal attenuates protein synthesis through phosphorylation of eIF2 alpha. Biochem. Biophys. Res. Commun.376 (4), 738-742.

  • S. Izawa, T. Kita, K. Ikeda, and Y. Inoue (2008) Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochem. J.411 (1), 111-119.

  • T. Miki, Y. Ito, K. Kuroha, S. Izawa, and T. Shinohara (2008) Potential of yeasts isolated from botrytized grape to be new wine yeast. Food Sci. Tech. Res.14 (4), 345-350.

  • Y. Takatsume, S. Izawa, and Y. Inoue (2007) Modulation of Spc1 stress-activated protein kinase activity by methylglyoxal through inhibition of protein phosphatase in the fission yeast Schizosaccharomyces pombeBiochem. Biophys. Res. Commun.363 (4), 942-947.

  • S. Izawa, T. Kita, K. Ikeda, T. Miki, and Y. Inoue (2007) Formation of the cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making. Biosci. Biotechnol. Biochem.71 (11), 2800-2807.

  • Y. Takeuchi, W. Nomura, T. Ohdate, S. Tamasu, H. Masutani, K. Murata, S. Izawa, J. Yodoi, and Y. Inoue (2007) Release of thioredoxin from Saccharomyces cerevisiae with environmental stimuli: solubilization of thioredoxin with ethanol. Appl. Microbiol. Biotechnol.75 (6), 1393-1399.

  • S. Izawa, K. Ikeda, N. Takahashi, and Y. Inoue (2007) Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Appl. Microbiol. Biotechnol.75(3), 533-538.

  • Y. Inoue, W. Nomura, Y. Takeuchi, T. Ohdate, S. Tamasu, A. Kitaoka, Y. Kiyokawa, H. Masutani, K. Murata, Y. Wakai, S. Izawa, and J. Yodoi (2007) Efficient extraction of thioredoxin from Saccharomyces cerevisiae with ethanol. Appl. Environ. Microbiol.73 (5), 1672-1675.

  • K. Maeta, W. Nomura, Y. Takatsume, S. Izawa, and Y. Inoue (2007) Green tea polyphenols function as prooxidants to activate oxidative stress-responsive transcription factors in yeasts. Appl. Environ. Microbiol.73 (2), 572-580.

  • S. Izawa, K. Ikeda, T. Ohdate, and Y. Inoue (2007) Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochem. Biophys. Res. Commun.352 (3), 750-755.

 

著書

 

  • 北本かつひこ 編 井沢真吾.分担執筆 (2015)醸造関連ストレス下での酵母の翻訳制御、「発酵・醸造食品の最前線」シーエムシー出版. Pp12-18.

  • 井沢真吾 分担執筆 (2013) 第4章 RNAの輸送・代謝制御 p51-65 原島 俊・高木博史 編「酵母の生命科学と生物工学 産業応用から基礎科学へ」  化学同人、京都.

  • 北本かつひこ 編 井沢真吾.分担執筆 (2011) エタノールストレス応答および醸造過程における酵母mRNA動態とオルガネラ形態変化の解析、「発酵・醸造食品の最新技術と機能性2」シーエムシー出版.

 

総説・解説

  • 安東稜子、井沢真吾(2024) 翻訳制御因子の凝集と再生を介した酵母のエタノール適応機構. バイオサイエンスとインダストリー 82(4), 374-377.

  • 吉田雅偲、井沢真吾 (2022) エタノールによるタンパク質変性と醸造過程の酵母のプロテオスタシス. 日本醸造協会誌 117(6), 378-383.

  • 穂本聖奈、井沢真吾 (2019) 長期高濃度エタノールストレスで生じる酵母の小型セプチンリング. バイオサイエンスとインダストリー 77(3), 233-235.

  • S. Kato  and S. Izawa (2018) Improvement of yeast fermentation efficiency utilizing mRNAs preferentially translated under translational repression. in Applied RNA Bioscience. Springer. ISBN 978-981-10-8371-6. (in press). 

  • 井沢真吾 (2015) エタノールおよび発酵関連ストレス下における酵母のmRNA flux. 極限環境生物学会誌, 14 (2), 46-53.

  • Izawa S. (2015) Yeast mRNA flux during brewing and under ethanol stress conditions.pp43-57 in Stress Biology of Yeast and Fungi (ed. Takagi H & Kitagaki H.). Springer.

  • 井沢真吾 (2013) リグノセルロース系バイオマス由来発酵阻害剤による酵母の翻訳阻害とmRNP顆粒の形成. バイオサイエンスとインダストリー 71(5), 416-419.

  • 井沢真吾 (2010) 大豆ペプチドを利用した発酵食品微生物の改変. 食品加工技術 30 (4), 1-8.

  • 井沢真吾 (2010) 可食天然素材を利用した遺伝子組み換え技術に頼らない食品微生物の改変. New Food Industry 52 (11), 9-16.

  • 井沢真吾 (2010) 出芽酵母のエタノールストレス応答におけるmRNAの動態 ~mRNAのhyperadenylationとP-body・Stress granuleの形成~. 日本醸造協会誌 105 (2), 63-68.

  • 井沢真吾、井上善晴 (2008) 酵母のエタノールストレス応答と転写後遺伝子発現調節. バイオサイエンスとインダストリー 66 (10), 557-561.

  • 井沢真吾 (2008) 酵母の中性脂肪問題. 生物工学会誌 86 (8), 397.

 

bottom of page